首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   4篇
测绘学   1篇
地球物理   11篇
地质学   11篇
天文学   5篇
自然地理   2篇
  2023年   2篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  1979年   1篇
排序方式: 共有30条查询结果,搜索用时 31 毫秒
1.
Stable water isotopes δ18O and δ2H are used to investigate precipitation trends and storm dynamics to advance knowledge of precipitation patterns in a warming world. Herein, δ18O and δ2H were used to determine the relationship between extratropical cyclonic precipitation and local meteoric water lines (LMWLs) in the eastern Ohio Valley and the eastern United States. Precipitation volume weighted and unweighted central Ohio LMWLs, created with samples collected during 2012–2018, showed that temperature had the greatest effect on precipitation isotopic composition. HYSPLIT back trajectory modelling showed that precipitation was primarily derived from a mid-continental moisture source. Remnants of major hurricanes were collected as extratropical precipitation during the 2012–2018 sampling period in central Ohio. Extratropical precipitation samples were not significantly different from the samples that created the central Ohio LMWL. Six additional LMWLs were derived from United States Geological Survey (USGS) Atmospheric Integrated Research Monitoring Network (AIRMoN) samples collected in Pennsylvania, Delaware, Tennessee, Vermont, New Hampshire, and Oxford, Ohio. Meteoric water lines describing published samples from Superstorm Sandy, plotted with these AIRMoN LMWLs, showed isotopic composition of Superstorm Sandy precipitation was commonly more depleted than the average isotopic composition at the mid-latitude locations. Meteoric water lines describing the Superstorm Sandy precipitation were not significantly different in slope from LMWLs generated within 300 km of the USGS AIRMoN site. This finding, which was observed across the eastern Ohio Valley and eastern United States, demonstrated a consistent precipitation δ2H–δ18O relationship for extratropical cyclonic and non-cyclonic events. This work also facilitates the analysis of storm development based on the relationship between extratropical event signature and the LMWL. Analysis of extratropical precipitation in relation to LMWLs along storm tracks allows for stronger development of precipitation models and understanding of which climatic and atmospheric factors determine the isotopic composition of precipitation.  相似文献   
2.
Meteoritical Bulletin 111 contains the 3094 meteorites approved by the Nomenclature Committee of the Meteoritical Society in 2022. It includes 11 falls (Antonin, Botohilitano, Cranfield, Golden, Great Salt Lake, Longde, Msied, Ponggo, Qiquanhu, Tiglit, Traspena), with 2533 ordinary chondrites, 165 HED, 123 carbonaceous chondrites (including 4 ungrouped), 82 lunar meteorites, 28 Rumuruti chondrites, 27 iron meteorites, 23 ureilites, 22 mesosiderites, 22 Martian meteorites, 21 primitive achondrites (one ungrouped), 17 ungrouped achondrites, 13 pallasites, 7 enstatite achondrites, 6 enstatite chondrites, and 5 angrites. Of the meteorites classified in 2022, 1787 were from Antarctica, 1078 from Africa, 180 from South America, 34 from Asia, 6 from North America, 4 from Europe, and 1 from Oceania.  相似文献   
3.
About half of the lunar meteorites in our collections are feldspathic breccias. Acquiring geochronologic information from these breccias is challenging due to their low radioactive-element contents and their often polymict nature. We used high-spatial-resolution (5 μm) NanoSIMS (nanoscale secondary ion mass spectrometry) U-Pb dating technique to date micro-zircons in the lunar feldspathic meteorites Dhofar 1528 and Dhofar 1627. Three NanoSIMS dating spots of two zircon grains from Dhofar 1528 show a discordia with an upper intercept at 4354 ± 76 Ma and a lower intercept at 332 ± 1407 Ma (2σ, MSWD = 0.01, p = 0.91). Three spots of two zircon grains in Dhofar 1627 define a discordia with an upper intercept at 3948 ± 30 Ma and a lower intercept at 691 ± 831 Ma (2σ, MSWD = 0.40, p = 0.53). Both samples likely experienced shock metamorphism caused by impacts. Based on the clastic nature, lack of recrystallization and the consistent U-Pb and Pb-Pb dates of the zircons in Dhofar 1528, the U-Pb date of 4354 Ma is interpreted as the crystallization age of its Mg-suite igneous precursor. Some of the Dhofar 1627 zircons show poikilitic texture, a crystallization from the matrix impact melt, so the U-Pb date of 3948 Ma corresponds to an impact event, likely the Imbrium basin-forming event. These data are the first radiometric ages for these two meteorites and demonstrate that in situ (high spatial resolution) U-Pb dating has potential for extracting geochronological information about igneous activities and impact events from lunar feldspathic and polymict breccias.  相似文献   
4.
The application of satellite differential synthetic aperture radar (SAR) interferometry, principally coherent (InSAR) and to a lesser extent, persistent-scatterer (PSI) techniques to hydrogeologic studies has improved capabilities to map, monitor, analyze, and simulate groundwater flow, aquifer-system compaction and land subsidence. A number of investigations over the previous decade show how the spatially detailed images of ground displacements measured with InSAR have advanced hydrogeologic understanding, especially when a time series of images is used in conjunction with histories of changes in water levels and management practices. Important advances include: (1) identifying structural or lithostratigraphic boundaries (e.g. faults or transitional facies) of groundwater flow and deformation; (2) defining the material and hydraulic heterogeneity of deforming aquifer-systems; (3) estimating system properties (e.g. storage coefficients and hydraulic conductivities); and (4) constraining numerical models of groundwater flow, aquifer-system compaction, and land subsidence. As a component of an integrated approach to hydrogeologic monitoring and characterization of unconsolidated alluvial groundwater basins differential SAR interferometry contributes unique information that can facilitate improved management of groundwater resources. Future satellite SAR missions specifically designed for differential interferometry will enhance these contributions.  相似文献   
5.
Abstract– Sacramento Wash 005 (SaW) 005, Meteorite Hills 00428 (MET) 00428, and Mount Howe 88403 (HOW) 88403 are S‐rich Fe,Ni‐rich metal meteorites with fine metal structures and homogeneous troilite. We compare them with the H‐metal meteorite, Lewis Cliff 88432. Phase diagram analyses suggest that SaW 005, MET 00428, and HOW 88403 were liquids at temperatures above 1350 °C. Tridymite in HOW 88403 constrains formation to a high‐temperature and low‐pressure environment. The morphology of their metal‐troilite structures may suggest that MET 00428 cooled the slowest, SaW 005 cooled faster, and HOW 88403 cooled the quickest. SaW 005 and MET 00428 contain H‐chondrite like silicates, and SaW 005 contains a chondrule‐bearing inclusion that is texturally and compositionally similar to H4 chondrites. The compositional and morphological similarities of SaW 005 and MET 00428 suggest that they are likely the result of impact processing on the H‐chondrite parent body. SaW 005 and MET 00428 are the first recognized iron‐ and sulfide‐rich meteorites, which formed by impact on the H‐chondrite parent body, which are distinct from the IIE‐iron meteorite group. The morphological and chemical differences of HOW 88403 suggest that it is not from the H‐chondrite body, although it likely formed during an impact on a chondritic parent body.  相似文献   
6.
We studied the oxidation-sulfidation behavior of an Fe-based alloy containing 4.75 wt.% Ni, 0.99 wt.% Co, 0.89 wt.% Cr, and 0.66 wt.% P in H2-H2O-CO-CO2-H2S gas mixtures at 1000 °C. The samples were cooled at rates of ∼3000 °C/h, comparable to estimates of the conditions after a chondrule-formation event in the early Solar System. Gas compositions were monitored in real time by a quadrupole mass spectrometer residual gas analyzer. Linear rate constants associated with gas-phase adsorption were determined. Reaction products were analyzed by optical microscopy, wavelength-dispersive-spectroscopy X-ray elemental mapping, and electron probe microanalysis. Based on analysis of the Fe-Ni-S ternary phase diagram and the reaction products, the primary corrosion product is a liquid of composition 66.6 wt.% Fe, 3.5 wt.% Ni, 29.9 wt.% S, and minor amounts of P, Cr, and Co. Chromite (FeCr2O4) inclusions formed by oxidation and are present in the metal foil and at the outer boundary between the sulfide and experimental atmosphere. During cooling the liquid initially crystallizes into taenite (average composition ∼15 wt.% Ni), monosulfide solid solution [mss, (Fe,Ni,Co,Cr)1−xS], and Fe-phosphates. Upon further cooling, kamacite exsolves from this metal, enriching the taenite in Ni. The remnant metal core is enriched in P and Co and depleted in Cr at the reaction interface, relative to the starting composition. The unreacted metal core composition remains unchanged, suggesting the reactions did not reach equilibrium. We present a detailed model of reaction mechanisms based on the observed kinetics and sample morphologies, and discuss meteoritic analogs in the CR chondrite MacAlpine Hills 87320.  相似文献   
7.
Deep basin aquifers are increasingly used in water‐stressed areas, though their potential for sustainable development is inhibited by overlying aquitards and limited recharge rates. Long open interval wells (LOIWs)—wells uncased through multiple hydrostratigraphic units—are present in many confined aquifer systems and can be an important mechanism for deep basin aquifers to receive flow across aquitards. LOIWs are a major control on flow in the deep Cambrian–Ordovician sandstone aquifers of the upper Midwest, USA, providing a source of artificial leakage from shallow bedrock aquifers and equilibrating head within the sandstone aquifers despite differential pumpage. Conceptualizing and quantifying this anthropogenic flow has long been a challenge for groundwater flow modellers, particularly on a regional scale. Synoptic measurements of active production wells and well completion data for northeast Illinois form the basis for a transient, head‐specified MODFLOW model that determines mass balance contributions to the region and estimates LOIW leakage to the aquifers. Using this insight, transient LOIW leakage was simulated using transiently changing KV zones in a traditional, Q‐specified MODFLOW‐USG model, a novel approach that allows the KV in a cell containing a LOIW to change transiently by use of the time‐variant materials (TVM) package. With this modification, we achieved a consistent calibration through time, averaging 19.9 m root mean squared error. This model indicates that artificial leakage via LOIWs contributed a minimum of 10–13% of total flow to the sandstone aquifers through the entire history of pumping, up to 50% of flow around 1930. Removal from storage exceeds 40% of flow during peak withdrawals, much of this flow sourced from units other than the primary sandstone aquifers via LOIWs. As such, understanding the timing and magnitude of LOIW leakage is essential for predicting future water availability in deep basin aquifers.  相似文献   
8.
Investigating changes in an aquifer system often involves comparison of observed heads from different synoptic measurements, generally with potentiometric surfaces developed by hand or a statistical approach. Alternatively, head‐specified MODFLOW models, in which constant head cells simulate observed heads, generate gridded potentiometric surfaces that explicitly account for Darcy's Law and mass balance. We developed a transient head‐specified MODFLOW model for the stratified Cambrian‐Ordovician sandstone aquifer system of northeastern Illinois to analyze flow within its 275 m deep cone of depression. Potentiometric surfaces were developed using static heads from production wells regardless of open interval; hence assuming no vertical head difference. This assumption was tested against steady‐state, head‐specified models of each sandstone strata for 1980 and 2014. The results indicate that the original conceptual model was appropriate in 1980 but not 2014, where a vertical head difference had developed at the center of the cone of depression. For earlier years, when the head difference was minimal, the transient head‐specified model compared well with a traditional, flow‐specified model. In later years, the transient head‐specified model overestimated removal of water from storage. MODFLOW facilitates the development of a time‐series of potentiometric surfaces and can easily be modified to test the impacts of different conceptual models, such as assumptions on vertical head differences. For this study of a deep confined aquifer, MODFLOW also offers advantages in generating potentiometric surfaces and flow fields over statistical interpolation techniques, although future research is needed to assess its performance in other settings.  相似文献   
9.
Significant progress has been made recently towards a better understanding of the nature, causes, and consequences of anthropogenic eutrophication of shallow coastal systems. It is well established that, in pristine systems dominated by seagrasses, incipient to moderate eutrophication often leads to the replacement of seagrasses by phytoplankton and loose macroalgal mats as the dominant producers. However, less is known about the interactions between phytoplankton and loose macroalgae at intense eutrophication. Using a combination of original research and literature data, we provide support for the hypothesis that substantial macroalgal decline may occur at intense eutrophication due to severe water column shading. Our results suggest that such declines may be widespread. However, we also show that intense eutrophication is not always necessarily conducive to severe water column shading and large macroalgal declines, possibly due to short water residence time and/or elevated grazing on phytoplankton. Furthermore, we provide support to the hypothesis that the occurrence of hypoxic/anoxic conditions in eutrophication-driven shifts in dominant primary producer assemblages influences the nature and extent of functional change in the system. Focusing on the macroalgal blooms and seagrass decline that often occur at incipient/moderate eutrophication, we show the blooms have a positive effect on epifaunal abundance under well-oxygenated conditions, but a negative effect if pervasive anoxic/hypoxic conditions develop with the bloom. These findings provide support to prior suggestions that secondary productivity in shallow coastal systems may increase as seagrasses get replaced by loose macroalgal stands if the stands remain well oxygenated. In concert, our results contribute to an improvement of our current model of eutrophication of shallow coastal systems and suggest that further effort should be put on ascertaining the mechanisms that may prevent severe water column shading and large macroalgal decline at intense eutrophication, as well as thorough documentation of the impacts of anoxic/hypoxic conditions on system functionality at different stages of eutrophication.  相似文献   
10.
Here, we report the mineralogy, petrography, C‐N‐O‐stable isotope compositions, degree of disorder of organic matter, and abundances of presolar components of the chondrite Roberts Massif (RBT) 04133 using a coordinated, multitechnique approach. The results of this study are inconsistent with its initial classification as a Renazzo‐like carbonaceous chondrite, and strongly support RBT 04133 being a brecciated, reduced petrologic type >3.3 Vigarano‐like carbonaceous (CV) chondrite. RBT 04133 shows no evidence for aqueous alteration. However, it is mildly thermally altered (up to approximately 440 °C); which is apparent in its whole‐rock C and N isotopic compositions, the degree of disorder of C in insoluble organic matter, low presolar grain abundances, minor element compositions of Fe,Ni metal, chromite compositions and morphologies, and the presence of unequilibrated silicates. Sulfides within type I chondrules from RBT 04133 appear to be pre‐accretionary (i.e., did not form via aqueous alteration), providing further evidence that some sulfide minerals formed prior to accretion of the CV chondrite parent body. The thin section studied contains two reduced CV3 lithologies, one of which appears to be more thermally metamorphosed, indicating that RBT 04133, like several other CV chondrites, is a breccia and thus experienced impact processing. Linear foliation of chondrules was not observed implying that RBT 04133 did not experience high velocity impacts that could lead to extensive thermal metamorphism. Presolar silicates are still present in RBT 04133, although presolar SiC grain abundances are very low, indicating that the progressive destruction or modification of presolar SiC grains begins before presolar silicate grains are completely unidentifiable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号